

Product datasheet for RC230165L4V

OriGene Technologies, Inc.

9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 https://www.origene.com techsupport@origene.com EU: info-de@origene.com CN: techsupport@origene.cn

GBA (NM_001171812) Human Tagged ORF Clone Lentiviral Particle

Product data:

Product Type: Lentiviral Particles

Product Name: GBA (NM_001171812) Human Tagged ORF Clone Lentiviral Particle

Symbol: GBA

Synonyms: GBA1; GCB; GLUC

Mammalian Cell

Selection:

Puromycin

Vector: pLenti-C-mGFP-P2A-Puro (PS100093)

Tag: mGFP

ACCN: NM_001171812

ORF Size: 1461 bp

ORF Nucleotide

The ORF insert of this clone is exactly the same as(RC230165).

Sequence:

OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of

reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing

variants is recommended prior to use. More info

OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression

varies depending on the nature of the gene.

RefSeg: NM 001171812.1

 RefSeq ORF:
 1464 bp

 Locus ID:
 2629

 UniProt ID:
 P04062

Cytogenetics: 1q22

Protein Families: Druggable Genome

Protein Pathways: Lysosome, Metabolic pathways, Other glycan degradation, Sphingolipid metabolism

MW: 54.9 kDa

Gene Summary:

This gene encodes a lysosomal membrane protein that cleaves the beta-glucosidic linkage of glycosylceramide, an intermediate in glycolipid metabolism. Mutations in this gene cause Gaucher disease, a lysosomal storage disease characterized by an accumulation of glucocerebrosides. A related pseudogene is approximately 12 kb downstream of this gene on chromosome 1. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jan 2010]